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Figure 1: Our method uses a small neural network to explicitly represent a dynamic light field, acting as a radiance cache for spatio-temporal
samples (x,ωo, ti). During inference, a simple visibility pass provides (x,ωo) samples at time ti. Our novel combination of parameter encodings
enables a small neural network to compute highly detailed radiance estimates in real-time. Due to the low computation cost of ∼13ms with
all our encodings enabled, we can render a full neural light field of a dynamic scene with more than 60 frames per second in 1920×1080
resolution. Additionally, our parameter encodings capture different scene dynamics within a compact memory footprint (40-80 MB). In the
dynamic scenes above, our neural dynamic light field representation is ≥ 20 times faster than previous works [HCZ21, DPD22].

Abstract
Synthesising high-quality views of dynamic scenes via path tracing is prohibitively expensive. Although caching offline-quality
global illumination in neural networks alleviates this issue, existing neural view synthesis methods are limited to mainly static
scenes, have low inference performance or do not integrate well with existing rendering paradigms. We propose a novel neural
method that is able to capture a dynamic light field, renders at real-time frame rates at 1920x1080 resolution and integrates
seamlessly with Monte Carlo ray tracing frameworks. We demonstrate how a combination of spatial, temporal and a novel
surface-space encoding are each effective at capturing different kinds of spatio-temporal signals. Together with a compact
fully-fused neural network and architectural improvements, we achieve a twenty-fold increase in network inference speed
compared to related methods at equal or better quality. Our approach is suitable for providing offline-quality real-time rendering
in a variety of scenarios, such as free-viewpoint video, interactive multi-view rendering, or streaming rendering. Finally, our
work can be integrated into other rendering paradigms, e.g., providing a dynamic background for interactive scenarios where the
foreground is rendered with traditional methods.

CCS Concepts
• Computing methodologies → Ray tracing; Neural networks;

1. Introduction

Rendering high-quality images with multi-bounce global illumina-
tion in real-time has been a long term goal of rendering research.

Because high-quality path tracing for non-trivial scenes is still far
from real-time, precomputing complex lighting remains an attractive
alternative. Ideally, a precomputed cache should capture a spatio-
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temporal, omni-directional light field, i.e., support radiance queries
at any point in a scene, for any direction, at any point in time.
Such a cache may be used in many applications. For example, free-
viewpoint 3D videos can be rendered directly from it; the backdrop
rendering of animated scenes can be served from the cache, while
foreground scene interactions are rendered on demand and use the
cache as an environment map; material changes can be encoded into
the time domain to, e.g., allow product customization like recolour-
ing, and even dynamic lighting changes like a complete day/night
cycle can be captured through the dynamic dimension of the cache.
Obviously, for real-time applications, querying the cache must be
highly efficient. Additionally, a compact memory footprint, would
allow streaming the cache, e.g., to enable free-viewpoint video with
a lightweight head mounted display.

Having access to a model that represents outgoing radiance has
two advantages over sampling-based methods at query time. First, it
reduces the complexity of rendering to running primary ray intersec-
tion pass and a subsequent cache evaluation, which is significantly
faster than multi-bounce path tracing. Second, the image directly ren-
dered from the cache does not suffer from sampling-related variance
on the radiance estimate.

Precomputing the radiance transfer for static scenes [SKS02] has
been researched for decades. However, computing and caching a
light field for dynamic scenes comes with a multitude of challenges.
A naive dynamic cache might attempt to discretise across all di-
mensions to store radiance estimates. While conceptually possible,
such an approach suffers from high memory requirements. Neural
rendering methods of synthetic [HCZ21, RBRD22, DPD22] and
real [MST∗20] scenes overcome these problems by compressing
and approximating the light field with a neural network [MST∗20].
While neural rendering methods are becoming indistinguishable
from Monte Carlo simulations, high-quality approaches typically
do not support real-time and/or dynamic settings. We use the term
light field in favour of radiance field to distinguish our work from
existing neural radiance fields (NeRFs), which often do not have
access to scene parameters during training and inference.

Existing neural rendering methods mainly focus on static scenes,
while some partially support dynamic scenes. Neural Radiance
Caching (NRC) [MRNK21] learns a radiance cache of the indirect
illumination on the fly which is combined with direct illumination
estimation at runtime. When the scene conditions change the radi-
ance estimate will take some time to adapt, resulting in bias w.r.t.
the current time step. This bias and variance due to sampling the
light sources, can be sidestepped in the case where the scene dy-
namics are known beforehand. Namely, we want to learn the full
dynamic light field of a fixed animation compared to adapting to a
dynamic scene at runtime. Neural Radiosity [HCZ21] learns a light
field of a static scene, but supports dynamic environments through
transfer learning. Online transfer learning as presented in Neural
Radiosity would not work in real-time applications due to the still
significant training time. Active Exploration [DPD22] comes clos-
est to our goals, as it learns the light field for each permutation of
selected scene parameters. Unfortunately, active exploration is far
from real-time and struggles to capture high frequency effects.

We make two assumptions about the context in which the cached
dynamic light field is used. First, to keep the computational cost low

the cache is directly used to synthesise images, without deferring to
further bounces (unless a fully reflective surface is hit). This implies
that the cache needs to capture both the spatial and temporal aspects
of the scene well, otherwise any unfiltered error in the radiance
estimate will be directly visible in the synthesised image. Second,
the cache can be trained as precomputation. Capturing a complex
spatio-temporal signal—at the very least—requires exploring the
signal and thus requires a compute budget similar to path tracing
many frames.

In our work, we address the shortcomings of prior work and
propose a real-time neural rendering approach for a dynamic light
field. We make the following contributions:

1. We propose a real-time capable spatio-temporal cache to approxi-
mate a dynamic light field, relying on small neural networks that
can be efficiently evaluated [Mül21] and a combination of multi-
ple spatio-temporal hash grid encodings [MESK22] to optimally
capture different scene dynamics.

2. We quantitatively and qualitatively investigate several possible
encodings for scene dynamics and present a novel surface-space
encoding, significantly improving temporal and spatial stability.

3. We present an improved self-training strategy inspired by re-
inforcement learning, which shows better sampling distribu-
tions and an improved gradient flow compared to previous
work [HCZ21].

2. Related Work

Many solutions to multi-bounce global illumination have been
proposed over the years by either improving the quality of sam-
pling [Vea98, LW95] or by caching [WRC88, KGPB05] solutions
of the rendering equation [Kaj86]. A shared property of state-of-
the-art methods is that they are data-driven; they build statisti-
cal models over previously seen information, for example by pro-
gressively learning a sampling distribution [MMR∗19, BWP∗20]
or constructing a neural model to estimate the outgoing radi-
ance [RWG∗13, MRNK21].

Precomputed Radiance Transfer for low-frequency far-field illu-
mination was successfully achieved by Sloan et al. [SKS02], and
later extended to enable self-shadowing [KLA04], near-field light-
ing [KAMJ05] and more dynamic lighting conditions [RWG∗13].
While capturing complex global illumination in the presence of
dynamic geometry and lighting remains an open challenge, neu-
ral representations have shown promise in accelerating light sam-
pling of complex geometric lights [ZBX∗21], importance sam-
pling [MMR∗19] and representing materials [ZRW∗23].

Neural Rendering of Synthetic Data has attracted increasing in-
terest over the last few years. Hadadan et al. [HCZ21] proposed to
solve the rendering equation for static scenes with a formulation
similar to classical radiosity techniques. Their approach generates
random surface samples and minimises the loss between the pre-
diction of outgoing radiance in a sampled direction and a Monte
Carlo estimate of the integrand using self-learning. Other meth-
ods operate in image space, they can rely on cheap to compute
G-buffers [TF17]. Image space approaches can even be extended to
dynamic scenes [GRPN20,DPD22,ZHM∗23] by augmenting the in-
put domain with scene parameters. However, previous image space
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methods rely on relatively large neural networks. With our method,
we show that a combination of smart parameter encodings allows us
to use a smaller neural network, boosting inference time by more
than an order of magnitude while still obtaining high-quality radi-
ance estimates. Furthermore, our approach is capable of handling
much more complex scene dynamics.

Neural Radiance Fields (NeRFs) [MST∗20] typically operate on
real world image or video data, which has a number of disadvantages
compared to using synthetic data. Nevertheless, NeRFs have been
extended to the temporal domain although the signal is much sparser
than in the static one [SCL∗23]. A large class of methods [PCP-
MMN20, FYW∗22, GCD∗22] learn a deformation to a canonical
space, on which they apply volume integration techniques to render
the image. These approaches are well-suited for single animated
objects. Time can be fed as a latent representation to the neural
radiance field, e.g., by simple concatenation [LSZ∗22], as 4D spatio-
temporal positional encoding [PSJ∗23] or by lifting time to higher
dimensions using additional networks [YJM∗23, FYW∗22, PSJ∗23].
Additionally, one can further reduce the dimensionality of the latent
space using tensor decomposition, notably 2D-2D [SZT∗23] and
3D-1D [IRG∗23]. To handle long animations, it can be split into
multiple segments and interpolated. Techniques that adaptively seg-
ment the animation sequence [IRG∗23] are orthogonal to our work
and can be adapted to our models. Though not leveraging neural
networks, Kerbl et al. [KKLD23] introduced a promising approach
to render static radiance fields in real-time. In general, capturing
full radiance fields from images or videos is a much more difficult
problem, as the scene geometry is unknown and only a predeter-
mined number of samples is available for training. In our setting,
we consider the scene geometry known and can actively generate
samples for training where they are needed most.

Real-time rendering of global illumination in a dynamic scene
shares some goals with us, but our target is to obtain offline-quality
global illumination (GI) in a compact representation that can be
rendered in real-time. Baked GI approaches typically learn per-
scene low-frequency diffuse indirect lighting, often stored in light
probes, which can be updated dynamically [MGNM19, MMK∗21].
Similarly, a neural radiance cache can learn indirect lighting during
runtime [MRNK21]. While approaches that rely on online updates
have the advantage that they can adjust to unknown scene dynamics,
they rely on sampling at inference time (variance) and a time window
in which their learnt radiance representation is outdated (bias). With
our approach, we capture the full, high-quality light field of a fixed
dynamic scene and enable rendering with real-time frame rates
directly from a cache.

Object space and texture space shading methods store view-
independent shading into an off-screen texture [Bak16, BFM10],
which can serve as a cache for simple shading. Storing view-
dependent shading information in a texture limits its use to equal or
nearby viewpoints. However, temporal and spatial coherence can be
exploited to reduce shading efforts [HY16,MNV∗21,NMSS22]. Ad-
ditionally, the temporal coherence enables split rendering pipelines
and framerate upsampling [MVD∗18, HSS21, HSV∗22]. Storing
intermediate effect computations in a texture-based cache, allows to
share and reuse a large amount of computations [WTS∗23]. While
the previously mentioned approaches have focused on simple ef-

fects, they have demonstrated that an UV-space may provide superior
spatio-temporal coherence compared to other parameterizations. In
our work, we exploit the UV-space as additional parameter space
demonstrating that it can also help capture spatio-temporal coher-
ence for caching complex light fields.
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Figure 2: Equal training time comparison between our method
and the static Neural Radiosity [HCZ21]. Even though we support
dynamic scenes and are 20× faster during inference, our radiance
estimates are similar to theirs.

3. Dynamic Neural Light Fields

Directly synthesising images using the output of a learned light
field, reduces the complexity of rendering to an efficient visibility
pass and a network query. We use ray tracing for the visibility,
typically stopping at the first bounce to query the cache. In case the
first hit surface is reflective, we trace the bounced ray, avoiding the
overly complicated task of learning the outgoing radiance of mirror
surfaces, which would potentially require learning how the entire
scene can be seen from each point of a mirror surface. We want to
stress again that this task is different from NeRFs, which also need to
learn the scene geometry alongside the radiance and draw multiple
samples along each ray. In our case, we query the cache only once
for each view ray (as we encounter a non-reflective bounce). This
not only simplifies the task of learning, but also allows significantly
more efficient inference, as the number of network evaluations is
greatly reduced.

With the goal of providing a high-quality, real-time cache, we
forgo complex network architectures, as it would be much more chal-
lenging to optimise inference time, and rather offload the complexity
of the learning to the encodings. We equip a multilayer perceptron
(MLP) with a collection of multi-resolution hash grids [MESK22],
which not only leads to faster training times but is also easier to
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adapt to domains other than spatial, does not require any precompu-
tation before training (like an occupancy grid) and exposes a small
set of parameters that can be used to tune the number of optimization
variables.

3.1. Basic Architecture

Our dynamic light field cache is conceptually similar to Neural Ra-
diosity [HCZ21], but captures a dynamic light field L(x,ω, t) using
a neural dynamic light field Lθ(x,ω, t), parameterised by a neural
network with parameters θ. In the following, we draw comparisons
with Neural Radiosity; to simplify the discussion, we will omit t
for brevity and consistency with the formulation in Neural Radios-
ity. Figure 2 shows the output of our method compared to Neural
Radiosity on static scenes.

To train the cache, we collect samples of the residual (Equation 1)
of the rendering equation, effectively training the cache on itself
through self-training [DK17]. Following the methodology of Neural
Radiosity, we take N Monte Carlo samples of the norm of the
residual (Equation 2) sampling a set of positions x and directions
ωo. For each of these outgoing radiance pairs, we trace rays towards
M points on the hemisphere using multiple importance sampling
between the BSDF and the light sources, which are used to estimate
the scattered radiance on the surface. Given these samples, we can
update the network to minimise rθ using automatic differentiation
and an off-the-shelf optimizer. Network and sampling parameters
are listed in Appendix A.

The signal stored in the cache converges to a high-quality esti-
mate of the light field given sufficient network capacity and training
time, see Hadadan et al. [HCZ21] for details on the gradients. The
following formulas describe the residual (Equation 1) and the es-
timation of the norm of the residual (Equation 2), where E(x,ω)
denotes the emitted outgoing radiance towards direction ω, f is the
bidirectional scattering distribution function, p(x,ω) is the proba-
bility of sampling a point and outgoing direction and x′(x,ω) is the
intersection obtained through tracing a ray from x towards ω against
the scene geometry.

rθ(x,ωo) = Lθ(x,ωo)−E(x,ωo)

−
∫

Ω

f (x,ωi,ωo) Lθ(x
′(x,−ωi),−ωi) dω

⊥
i

(1)

L(θ)≈ 1
N

N

∑
j=1

rθ(x j,ωo, j)
2

p(x j,ωo, j)
(2)

Extending this formulation to a dynamic light field, adds an extra
input t (regardless of used encoding) to the network that needs
to be sampled repeatedly during training. While it is technically
possible to randomly sample this time t for every sample in the
batch, we opt to not do this due to the prohibitive cost of keeping
thousands of instances of the scene in memory at the same time.
Concretely, we use one time step for each batch, effectively biasing
the gradient for that batch. However, since across batches this time
step is sampled randomly, training is unbiased in the limit [GBC16].
We experimented with mixing several samples of t in a batch but
found no significant changes in the quality of the results.

To achieve real-time inference, the neural network representing
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Figure 3: Using only time as additional input the network is not
capable of producing accurate dynamic lighting effects, even in a
trivial scene like the Cornell box, with a simple rotating light source.

the dynamic light field needs to be highly efficient. To that end
we use tiny fully fused neural networks [Mül21]. While making
the network trivially small reduces the computational load, it also
reduces the overall representational strength of the network. We
suggest several spatio-temporal encodings in the following section
that help our dynamic light field’s small network to represent the
complex spatio-temporal signal.

3.2. Spatio-temporal Encodings

It is unclear from prior work which temporal encoding is optimal,
especially for capturing a dynamic light field of a synthetic scene.
We show that combining encodings in different domains, while
reducing the number of latent dimensions, is an effective strategy in
capturing a variety of dynamic light fields. Specifically, we focus on
the following encodings:

• A 4D spatio-temporal encoding H(x, t) that captures correlations
between the spatial and temporal signal in the light field to better
represent radiance flowing through space coherently.

• A 3D spatial encoding H(x) which extracts the static features of
the scene for a more stable reconstruction.

• A novel 2D UV-space encoding H(uv) which improves robustness
for fast moving objects by informing the radiance network of
quantities that are position or rotation-invariant.

• A 1D temporal encoding H(t) that yields a higher dimensional
representation for time to capture smoother changes in light in-
tensity.

We found that the combination of these encodings is necessary to
achieve high-quality radiance estimates for challenging dynamic
scenes under a constraint memory and computation budget. It is
worth noting that we also supply basic parameters as additional vari-
ables to the network, including 3D position, time, UV-coordinates,
outgoing direction and surface properties—see Appendix A.

Starting from existing static neural light fields methods [HCZ21],
a naive extension would be to simply pass an extra float t to the
network. As can be seen in Figure 3, using the time t directly as
input to the neural network MLP(H(x), t) is not robust enough, as
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H(x),H(t) H(x),H(t),H(x, t) H(x),H(t),H(x, t),H(uv)

H(x),H(t) H(x),H(t),H(x, t) H(x),H(t),H(x, t),H(uv)

108.7 MB 87.8 MB 78.8 MB

Reference

Figure 4: In the Rover Temporal scene the rover is lit by multiple light sources and rotates quickly leading to challenging shadows on the floor
as well as significant lighting changes on the rover. We incrementally add parameter encodings while reducing the number of optimizable
parameters. The bottom row shows the FLIP error visualised with the viridis colour map: (left) A separate spatial and temporal encoding
H(x),H(t) is unable to capture high frequency details. (centre) Adding a spatio-temporal encoding H(x, t) better captures the dynamic
shadows on the floor. (right) Only a surface-level encoding H(uv) is capable of reconstructing fine details on the rover.

even with slowly changing low frequency illumination, the network
is not capable of learning smooth transitions over time. Therefore,
it is necessary to lift time to a higher dimensional latent represen-
tation. The addition of a simple temporal encoding H(x),H(t) is
sufficient for the simple Cornell Box scene, but becomes impractical
for more complex scenes with varying animation. It would require a
substantial growth in network size which would be negative to our
inference times. In the following experiments we evaluate the quality
of different temporal encodings for different animation types.

Fast Moving Objects Figure 4 shows a complex rotating object,
which casts a shadow on a static ground plane. Due to moving
geometry, the state of spatial grid cells fluctuates between a complete
occlusion and bright illumination (see supplementary video). There
is a strong correlation in the illumination as the shadows move across
the ground plane, which can be exploited to better represent the light
field. Instead of making the network significantly deeper and wider,
we opt to leverage a 4D H(x, t) grid to encode this correlation. This
approach is particularly effective at representing the shadows on the
ground (centre).

The high-dimensional 4D grid creates noticeable artefacts on
regions of the Rover that traverse more spatial grid cells (door and
engine compared to the roof of the vehicle). While the outgoing
radiance for these points is fairly similar in a small window of time,
due to the constant rotation, the network needs to learn this offset
as well. Even more, the difference in tangential speed across the
mesh results in different spatial and temporal frequencies, further
increasing the complexity of the learning task.

A surface-based encoding can help the network, as it directly
targets changes in illumination on the surface. Our novel 2D
surface-level encoding H(uv) is inspired by object-space lighting
approaches that have been shown to improve spatio-temporal co-
herence [MNV∗21]. We add a single multi-level grid on top of a
UV atlas for the entire scene, which combines the UV maps of each
object proportionally to their surface area. This new encoding shows
considerable quality improvements (Figure 4 and 6) . Figure 5 shows
the UV map of a simple scene that uses a hash grid over the UV

domain and the visualisation of the outgoing radiance in the normal
direction in the bottom row. Shading effects that are translation
and/or rotation invariant are captured well by the encoding. Relying
on a UV-encoding allows us to capture spatio-temporally stable
shading for moving objects, which would otherwise show up as
dynamic high frequency effects in 3D space. Appendix B provides
details on the creation of the UV atlas.

Time

L o
(u

v,
t)

Sc
en

e

Figure 5: Visualising the predicted radiance from a network trained
with a 2D grid encoding over the UV domain: For each texel in
texture space we evaluate the network with the surface normal as
outgoing direction and plot the colour for various frames. We show
that the network is able to learn texture space shading.

Static Geometry with High-Frequency Lighting Another dynamic
scene is presented in Figure 6, the Dining Temporal scene, which
is lit mostly indirectly by a directional light that rotates and a table
that is translating. The transformations of the objects are non-linear.
The table, hanging lamp and blinds cast moving hard shadows
on the wall. Even though the scene geometry is mostly static, the
H(x),H(t) encoding struggles to keep up with the lamp moving and
loses the hard shadows towards the end of the animation. Similarly
to the Rover scene (Figure 4), capturing the correlation of the signal
as it moves across the left wall is important, but in this case the
lighting is much higher frequency and the 4D spatio-temporal grid
is unable to preserve the sharp boundaries during the animation.
To solve both issues simultaneously we concatenate the hash grids
into H(x),H(t),H(x, t). Due to the mostly static nature of the scene,
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ReferenceH(x),H(t) H(t),H(x, t) H(x),H(t),H(x, t) H(x),H(t),H(x, t),H(uv)

(a) (b) (c) (d)

108.7 MB 121.8 MB 87.8 MB 78.8 MB

Figure 6: We show the quality of different encodings in the Dining Temporal scene. The bottom row shows the FLIP error visualised with the
viridis colour map. The advantage of (b) the dynamic encoding compared to (a) a separate spatial and temporal encoding is that it can better
track the moving hard shadows over time. Unfortunately, it comes with a disadvantage as the shadows now have fuzzy boundaries. (c) The
union of the static and dynamic encoding combines the benefits of both by being able to capture the sharp boundaries more accurately for the
entire length of the animation. (d) Although the scene geometry is mostly static, adding the surface encoding does not deteriorate the quality.

Table 1: Inference time of the neural representation in milliseconds
for different encodings and their combinations. As expected, the
overhead of each encoding is proportional to its dimensionality.
Reducing the resolution of the intermediate level of the grid can
result in performance improvements. Note that the columns are not
cumulative as they contain the network inference time. α is the
albedo of the surface. All inference information is obtained with an
RTX 4090 and i9-13900K.

Model x⃗, n⃗, w⃗,α, uv, t H(x) H(t) H(x, t) H(uv) Σ

Full 2.76 2.66 1.84 3.68 2.09 12.65
Low res. 2.73 1.85 1.54 2.25 1.61 7.85

(a) Stop Gradient (b) No Stop Gradient (c) Reference

Figure 7: Comparison of the learned light field after 40,000 train-
ing iterations. Not stopping the gradient darkens the Living Room
and the colour bleed across the scene is not captured well. While
this scene is one of the more extreme examples, we notice similar
qualitative differences on all scenes. Blocking the gradient’s flow
never decreases the quality.

adding H(uv) should not improve quality. Interestingly, the overall
error is slightly removed still, highlighting that the UV-encoding in
general does not negatively impact quality.

3.3. Practical Considerations

Stop gradient. Since we use self-learning, the neural network ap-
pears twice in the gradient computation of the norm of the residual,
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Figure 8: Difference in image quality due to the use of a stop
gradient function, blocking the gradient flow greatly improves the
convergence of the network. While subtle, the reduced computational
cost of a smaller computation graph increases training steps per
second.

once for the outgoing radiance and N times for the sampled in-
coming radiance. In contrast to the Neural Radiosity method, we
found that stopping the gradient flow of the N incoming radiance
estimates performs significantly better. Namely, the cost of training
goes down due to the reduced size of the computational graph used
in automatic differentiation. Qualitatively, we also gain up to an
order of magnitude of improvements in some scenes, see Figure 8.
Equation 3 shows the modified formulation of the residual, sg stops
the gradient flow of its parameters.

rθ(x,ωo) = Lθ(x,ωo)−E(x,ωo)

−
∫

Ω

f (x,ωi,ωo) sg(Lθ(x
′(x,−ωi),−ωi)) dω

⊥
i

(3)

We notice a strong similarity with deep reinforcement learning
methods where stopping the gradient flow towards the target net-
work [MKS∗15, SB18] is common practice. Recent graphics publi-
cations [DK17] hinted at the similarity of reinforcement learning to
the rendering equation and provided similar experimental results by
stopping the gradient flow [HLN∗23].

Improved sampling. To estimate the norm of the residual (Equa-
tion 2) pairs of (x,ωo) need to be sampled from p(x,ωo). In compar-
ison to Neural Radiosity, we use area importance sampling of x by
building a cumulative distribution function (CDF) over the objects’
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Figure 9: Impact of positional sampling of our implementation
(blue and orange) and the open source implementation of Neural
Radiosity [HCZ21] (green) on the quality of the synthesised images
of the Dining Room. Note that uniform sampling refers to uniformly
selecting an object irrespective of its surface area, not uniformly
distributing points in the scene.

surface areas, while still uniformly sampling the hemisphere. The
benefits of positional sampling are mainly noticeable in scenes with
strongly varying surface area between objects. For example, using
uniform object sampling in the Dining Room would allocate the
same amount of samples to one of the tea cups as to all the walls
in the room. Overall, importance sampling the area of the objects
improves performance significantly, see Figure 9 for a comparison
between our implementation and the open source version of Neural
Radiosity. Additionally, in Appendix C, we show a heat map of the
sample density of a batch of positions.

with EMA

without EMA

Figure 10: Improving temporal stability by computing the exponen-
tial moving average of the temporal inputs H(t),H(x, t) and t before
feeding them to the dynamic neural light field.

Temporal Stability. Due to the high frequency hash grid encod-
ing, high frequency patterns might pop in and out of neighbouring
temporal frames of a non-converged dynamic light field. Existing
methods that adaptively train a neural network to capture the light
field [MRNK21] suggest computing an exponential moving average
(EMA) of the network weights of neighbouring time steps to im-
prove temporal stability. Since our network weights are the same for
every point in time, we choose to compute an EMA on the temporal
subset of the network inputs: H(t),H(x, t) and t. While an EMA
of the entire input vector works even better for a static camera and
scene, it adds ghosting artefacts when either the camera or the ge-
ometry move. See Figure 10 and the supplementary material for a
video on the effects of EMA.

4. Results

We focus on a variety of scenes which exhibit different temporal
behaviour. We are interested in varying frequencies of animation,

soft and hard shadows, static and dynamic geometry of different
complexity as well as lighting changing in intensity and tint. For
our tests, we built on top of the standard dataset of Bitterli [Bit16]:
The scenes and their animations are depicted in Figure 11 as well as
the supplementary video and they each present different challenges:
The Rover is a complex mesh with diffuse, dielectric and rough
conductor surface BSDFs rotating around itself. The Slow version
performs a 180 degree rotation, while the Fast performs a full 360
degree rotation. It is lit exclusively by two area lights that cast
soft shadows on the floor and results in high frequency changes in
lighting on the surface of the vehicle. The light in the Cornell Box
is rotating by the specified amount of degrees. As the light is one
sided and close to the ceiling, it creates a strong highlight with a
quickly moving boundary between dark and light. The Dynamic
Rings scene contains complex caustics being cast on the floor by the
ring geometry through 6 different area light sources, which make a
full rotation around the scene resulting in rotating caustics; Dining
temporal is made dynamic by the table moving up (Slow) and down
again (Fast) as well as a directional moving light cast through the
blinds. This results in spatially high frequency hard shadows cast
on the wall which move in a non-linear way. The Bunnies scene
is a long animated sequence where multiple rotating bunnies are
scattered in the scene with high velocity and collide elastically with
the geometry. As the bunnies emit differently coloured light, tinted
highlights appear and disappear at various points in time and space;
The Bedroom scene is lit by a rotating environment map. This creates
a strong highlight that can be seen moving across a textured floor
with a rough plastic BSDF; The Chair and Mirror Chair contain the
same animation of a tilting chair, which is completely reflective in
the mirrored version. The main challenge is the hard shadow that is
cast on the floor.

Note that we allocate an equal amount of memory to all variants
of our methods, especially when varying the encodings where we
ensure that our full model always stays below 80MB. This is similar
to the budget used by Hadadan et al. [HCZ21]. We do not fine-tune
the parameters in a scene dependent way, but rather use a robust
set of parameters (Appendix A) that work well on a wide range of
scenes.

We use Mitsuba [JSR∗22] as the basic framework for training
and rendering. Since Mitsuba does not explicitly support dynamic
scenes, we treat them as a sequence of static scenes, resulting in a
significant overhead for reoccurring scene and data structure setup.
Thus, we ignore these costs for rendering time measurements for all
tested methods and only focus on the inference speed of the neural
representation.

4.1. Static Scenes

While not the focus of this paper, we briefly discuss our performance
on static scenes. Due to our network architecture, encoding and
training setup (see section 3.3), we significantly outperform Neural
Radiosity [HCZ21], running at ≥ 60 frames per second in full
HD compared to two frames per second, see Figure 2. Comparing
only the respective speed of the dynamic light field representation—
without Mitsuba—we are around 23 times faster at runtime, while
the quality of our renders is similar. As the network does not simply
learn outgoing radiance towards the camera—it learns the full light
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Figure 11: Overview of the animations used in Table 3. From left to right and top to bottom: Rover, Rings Dynamic, Bunnies, Chair Tilting,
Dining Slow/Fast, Bedroom, Cornell 180/360/720, Chair mirror tilting.
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Figure 12: A hash grid encoding [MESK22] is able to allocate
budget dynamically and in our scenes always performs better or
equivalent to sparse feature grids [HCZ21].

field—the scene can be freely explored from all possible camera
angles at runtime.

We compare the use of hash grids with the static sparse feature
grids from Neural Radiosity [HCZ21] in Figure 12, concluding that
while qualitatively they behave similarly, the hash grids are more
modular and have a higher performance. On top of this, extending
hash grids to other types of encodings such as time and UV coor-
dinates is straightforward and the hash grids do not require slow
precomputation, e.g., 1 hour in the Rover scene.

4.2. Performance

Key runtime performance factors are the number of inputs to the
neural network and the coherence of the memory access of the hash
grids. To assess these two factors, we decrease the budget of the
grids by reducing the number of intermediate levels while keeping

Resolution Active Exploration Neural Radiosity Ours

1280x720 128.53 134.58 6.62
1920x1080 279.96 293.76 12.65

Table 2: Comparing the inference time of the neural network of
[DPD22] and [HCZ21] as provided by their open source implemen-
tations. The time is reported in milliseconds for various resolutions.
Our reported inference time uses a small network (128x128x4, tiny-
cuda-nn [Mül21]) and all our hash grid encodings (section 3).

the dimensions of the features and the minimum and maximum res-
olution fixed. We find that this provides a single practical control to
memory and performance and show the results of such experiment
in Table 3. This lower resolution model uses roughly 50% of the
memory while only slightly reducing the visual quality, indicating
that tuning the network/encoding capacity on a scene by scene basis
can further improve inference speed. A compact memory representa-
tion is crucial for network streaming and low performance hardware
support. In our experiments, reducing the size of the network even
further showed to be more harmful to quality than reducing the di-
mensionality of the grids. The inference time of this low resolution
model is about 35% lower compared to the full resolution model as
shown in Table 1.

4.3. Comparisons

Our main contribution is a way to render dynamic light fields in
real-time. Our method is unique in the sense that it represents the
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Figure 13: The learning task of Active Exploration would be more
complex as it learns all the permutations of the parameter space, we
only learn one manifold in the parameter space.

dynamic light field in an explicit spatio-temporal cache. We com-
pare it to the two most closely related neural rendering methods,
Active Exploration [DPD22] and a NeRF-style rendering method
TiNeuVox [FYW∗22]. Both methods are designed with dynamic
scenes in mind, making them ideal for comparison.

4.3.1. Active Exploration

Since Active Exploration does not explicitly encode time, we reduce
its input space to a manifold through all the possible parameter per-
mutations for the objects in the scene. In the example in Figure 13,
Active Exploration would learn the outgoing radiance for every
combination of door and table position. Since we assume the scene
dynamics to be known beforehand, we modify Active Exploration
to simply learn one path through this permutation space to setup a
fair comparison. Without this modification, the signal Active Explo-
ration learns would be significantly more difficult than our setting.
Concretely, we expose a single parameter t to Active Exploration,
which determines the current transformation of scene objects.

Inference. Both Active Exploration and our method use a neural
network to represent outgoing radiance and use Mitsuba [JSR∗22] to
create the required input buffers. While Active Exploration generates
G-buffers, we use ray tracing for a potential first bounce on reflective
surfaces. Note that our method would also work using only a G-
buffer input, but at the cost of not being able to capture reflections.
The results of the experiment below use ray tracing over the G-buffer
option since it is the most robust setting. A G-Buffer pass in modern
rendering systems takes less than 1 ms. Running our method on the
scenes used in Active Exploration, network inference is about 20
times faster with our method, as seen in Table 2.

Quality. To compare the quality of our method and Active Ex-
ploration we train both of them for 3 hours. The results are found
in Figure 14. Overall, the error metrics are similar, with the major
difference that we are about 20 times faster during inference. Addi-
tional quality metrics for our approach can be found in Table 3. One
interesting difference is the type of error on the radiance estimate
is different for both methods. While our method tends to create
high frequency artefacts, Active Exploration tends to blur the signal,
which they also mention as a limitation. While quantitatively the
error is similar, we can apply a filter or jitter the sampling of the
hash grid to further reduce artefacts, as we show by the application
of an exponential moving average on the temporal encodings in sub-
section 3.3. We urge the reader to look at the supplementary video

Table 3: We report static, perceptual and video error metrics for the
full resolution model as well as a model using half of the parame-
ters. The low resolution grid can often achieve similar quality at 1⁄2
memory and 2⁄3 computation cost, in particular if the scene is simple.

Full Model Low resolution Model
Scene MSE ↓ LPIPS ↓ VMAF ↑ MSE ↓ LPIPS ↓ VMAF ↑

Bunnies 9.9e-4 0.0840 82.44 1.1e-3 0.0909 80.71
Dyn. Rings 1.6e-3 0.0294 77.68 1.6e-3 0.0291 78.16
Rover 3.5e-4 0.0254 73.90 3.7e-4 0.0262 71.97
Cornell 180 9.5e-5 0.0168 94.74 9.6e-5 0.0172 94.81
Cornell 360 8.0e-5 0.0174 97.83 1.0e-4 0.0172 97.58
Cornell 720 1.0e-4 0.0179 99.59 1.1e-4 0.0176 99.54
Tilting Chair 5.7e-4 0.0318 84.23 6.1e-4 0.0338 82.73
Mirror Chair 1.2e-3 0.0556 80.97 1.4e-3 0.0558 79.92
Dining Slow 1.6e-3 0.0366 81.46 1.9e-3 0.0386 76.27
Dining Fast 2.9e-3 0.0521 70.25 3.1e-3 0.0539 65.03

FLIP 0.111
MSE 0.0151

referenceactive explorationours

FLIP 0.130
MSE 0.0162

FLIP 0.0321
MSE 1.22e-4

FLIP 0.0605
MSE 3.17e-3

FLIP 0.140
MSE 0.0021

FLIP 0.116
MSE 0.0186

Figure 14: Comparison between Active Exploration [DPD22] and
our method on the Bunnies and their Sphere Caustic and Bedroom
scene (3 hours of training). While Active Exploration tends to blur
the radiance estimate, our method can exhibit higher frequency
noise especially in the Bedroom scene due to the glossy floor. For
both methods the respective artefacts reduce with a larger training
budget.

to see the quality of our method. Table 3 shows very consistent low
error rates for all tested scenes.

4.3.2. Dynamic NeRF methods

Recent work on reconstruction using neural radiance fields, have
extended the training domain to incorporate a temporal dimen-
sion [PCPMMN20, FYW∗22] and similarly to this work enhance
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Figure 15: TiNeuVox trained for 6 hours on the Bunnies scene,
similar to the view in Figure 14.

the neural representation with novel representations and encodings.
Since neural radiance field methods need to reconstruct the scene
geometry as well, we hypothesise that they will not work well on
such a high frequency dynamic scene. Figure 15 shows the result
of training on 150 frames of the Bunnies Animation. More recent
works like K-Planes [FKMW∗23] and HexPlane [CJ23] report sim-
ilar quantitative results on synthetic dynamic data. HexPlane and
K-Planes obtain similar results to TiNeuVox on the Bunnies scene
with a PSNR around 10-15 dB.

5. Discussion and Conclusion

In this paper we introduced neural dynamic light fields, an efficient
approach for spatio-temporal caching of radiance. Our approach
to image synthesis is fast due to the use of a cache at the first
(non-reflective) bounce and the use of a small neural network. Still,
we achieve high quality due to the combination of several spatio-
temporal encodings. Using a novel surface-space encoding, we
improve the neural network’s ability to learn shading that remains
similar under rotation and translation. As such, our approach is an
order of magnitude faster than previous work, opening the door for
such caching to be used in real world applications.

Limitations We rely on a reasonable, bounded, non-overlapping
UV mapping for our encoding. While most assets used in practice
use textures of some form and thus provide at least a good starting
point for the UV-map, the UV-maps may show overlaps or may
rely on repeating texture coordinates. We currently use a simple
texture map generation approach to generate novel UV mappings,
as discussed in Appendix B. In general, we consider the generation
of a low-distortion UV mapping a separate problem that could still
increase our quality. Similarly, non-rigid objects and transforma-
tions may not offer a good UV-mapping. A more efficient UV-map
generation and packing approach would reduce the memory budget
of our UV hash grids [LVS18].

Using a small neural network for inference, comes with the down-
side that all information that is not contained in the encoding now
has to be represented with less capacity. This can cause our method
to show high frequency artefacts at lower training iterations, espe-
cially parts of the light field that are highly dependent on directions
such as glossy materials. Supporting shading effects that are highly
dependent on the direction—e.g. by encoding the direction vectors
as well—without the need for a larger neural representation is an
interesting research direction.

Obviously, our approach is limited to synthetic scenes that provide

surfaces to sample on. Volumetric elements, such as fog or partic-
ipating media—which can be represented with a neural radiance
field—are not directly supported by our current method. However,
we could also draw multiple samples inside of a participating media
and learn from these volumetric scattering events. Alternatively, at
the boundaries of volumes to reduce slot allocations in the hash grid.

All dynamics in our scenes are currently one-dimensional, i.e.,
one parameter completely controls all dynamics in the scene. An
obvious choice of this parameter is time, which allows to represent
arbitrary complex dynamics in a scene to, e.g., generate a high-
quality 3D free-viewpoint video. As mentioned before other choices
are capturing one specific animation or changing on material param-
eters. Although we did not go into details in the paper, initial experi-
ments suggest that our main contribution—a novel combination of
encodings to enable real-time dynamic light field rendering—still
applies to higher dimensional input domains. Ideally, we would like
to extend our method not only to a higher dimensional parameter
space, but to novel objects. Currently, introducing a new object
within the dynamic light field that was not observed during train-
ing would result in incorrect shading. Handling unseen geometry
within our framework—for example, to render a dynamic avatar of
a user—could be achieved using a separate shader pass that samples
the dynamic light field.

Future work To extend our approach to multi-dimensional scene
dynamics, we could follow an approach similar in spirit to how
NeRFPlayer [SCL∗23] categorises different types of temporal obser-
vations (static, dynamic, new observations). We could predict which
encoding could be most useful to capture the dynamics for different
parts of a complete scene. For example, non-moving objects may
not benefit from a UV-encoding, areas that exhibit very homoge-
neous lighting conditions throughout all parameter variations can
be encoded with only position. Having direct access to the scene
description, may allow to make such decisions with high accuracy.

We believe an approach based on smarter sample allocation pro-
portional to where neural networks struggles to capture the signal
like in Diolatzis et al. [DPD22] could be a promising research di-
rection. Tensor decomposition [SZT∗23] techniques could also be
applied to reduce the dimensionality of the hash grid.

Finally, we are looking forward to seeing whether UV-space
encodings and explicitly representing the dynamic light field with a
spatio-temporal cache, will be as transformative for other domains
as they are for image synthesis. Our work is a step forward in
caching complex global illumination in dynamic scenes, which
enables many real-time applications, like architectural visualisation
and free viewpoint movie experiences.
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Appendix A: Parameters

Network We use a fully fused neural network with 4 hidden layers of
128 neurons and ReLU as activation function, except for the output
layer which has no activation function. The PyTorch [PGM∗19]
network is trained without bias vectors so that the weights can be
quantized to 16-bit and transferred to the fast fully fused implemen-
tation of Müller et al. [MRNK21]. Together with the encoding we
concatenate a mix of auxiliary parameters which further help the
network distinguish possible surface properties and hash collisions.
The parameters are listed in Table 4.

Variable Dimension Domain Description
x⃗ R3 [0,1] Position
n⃗ R3 [−1,1] Normal
w⃗ R3 [−1,1] Outgoing direction
α R3 [0,1] Diffuse reflectance
t R [0,1] Time of the animation

uv R2 [0,1] UV coordinates

Table 4: Auxiliary inputs passed to the neural network in our imple-
mentation.

The model is optimized with the Adam optimizer included with
Pytorch and a learning rate of 5e−4 . We use a Huber Loss [Hub64]
with δ = 1.0.

Encoding For the multi resolution hash grid encodings we follow
the recommended parameters of Müller et al. [MESK22] and their
notation. We use a base resolution Nmin = 16, a number of levels
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L = 16 and a hashmap allocation budget of T = 219 with each level
in the grid increasing in scale by 2 for the high resolution model and
4 for the low resolution model. The dimensionality of each latent
vector F in the multi resolution hash grid is reported in Table 5.
We note that for time, it is often not necessary to have such a high
number of levels but given enough training time the high frequency
artefacts disappear.

Encoding Dimensions
H(x), t FH(x) = 8

H(x), H(t) FH(t) = FH(x) = 8
H(t), H(x, t) FH(t) = 2,FH(x,t) = 8

H(x), H(t), H(x, t) FH(x) = FH(t) = 2,FH(x,t) = 4
H(t), H(x), H(x, t), H(uv) FH(t) = FH(x) = FH(x,t) = FH(uv) = 2

Table 5: Number of feature dimensions per entry in the hash grids
shown throughout the paper.

Implementation Details To estimate the gradient of the residual
(Section 3) we use N = 214 and M = 32 samples for all experiments.
While varying these values can improve performance on certain
scenes/animations we found these values to be sufficiently robust.
Each one of the M hemispherical samples are drawn proportional
to the BSDF and combined with M different light source samples
through multiple importance sampling. One interesting direction of
research would be to drive the sample selection with the neural rep-
resentation, for example through resampling based on the incoming
radiance estimate [MMK∗21]. In practice we store our training sam-
ples in a buffer so that we can reuse them in later training iterations
without the need of tracing rays, amortizing the cost of sampling
the residual. For all the experiments in our work sample reuse was
turned off.

Appendix B: Details of UV encoding

To generate the UV maps, we automatically process the standard
dataset of Bitterli [Bit16] and unwrap the meshes with the "Smart
UV Project" operator in Blender [Com18] with maximum angle
limit set to 66%. The mapping is not guaranteed to be injective
(free of overlaps), but upon manual inspection we found only a
few meshes to have overlaps and that in general the majority of
the UV maps had a good coverage of the domain. As described
in appendix A, to further discriminate from possible collisions we
input the global UV coordinates to the dynamic light field network.
To pack the individual object UVs in a UV atlas, we pack each UV
map along a grid proportional to their shape’s surface area.

Appendix C: Area Sampling

In Figure 16 we show a scatter plot of the sample distribution
in the Bedroom scene. Scenes that contain objects with strongly
varying surface areas—like Figure 16—will benefit the most from
area importance sampling. Interestingly, when the model struggles
to capture highly glossy materials—which are often small in our
scenes—uniformly sampling objects has a slight advantage in terms
of convergence time due to the increase in sampling density where
to model struggles to capture the signal. For example, in Figure 2 the
quality of the golden vase is significantly lower due to the decreased

training sample density. Taking the material complexity, or the train-
ing loss itself [DPD22], into account when placing samples would
further reduce the training error. While the longer training of our
method diminishes the artefacts on glossy materials, we consider
efficiently representing glossy materials with a tiny neural network
an open research problem.

Uniform Area

Figure 16: Heatmap of the difference of uniform sampling of objects
and sampling based on their surface area. The gradient of the batch
of samples will be significantly less biased with respect to the actual
radiance distribution when using Area sampling.
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